Rassegna bibliografica

Journal of Occupational and Environmental Hygiene. Vol. 12, Iss. 11, November 2015

Manganese Fractionation Using a Sequential Extraction Method to Evaluate Welders’ Shielded Metal Arc Welding Exposures During Construction Projects in Oil Refineries


Riassunto

The National Institute for Occupational Safety and Health has conducted an occupational exposure assessment study of manganese (Mn) in welding fume of construction workers rebuilding tanks, piping, and process equipment at two oil refineries. The objective of this study was to evaluate exposures to different Mn fractions using a sequential extraction procedure. Seventy-two worker-days were monitored for either total or respirable Mn during stick welding and associated activities both within and outside of confined spaces. The samples were analyzed using an experimental method to separate different Mn fractions by valence states based on selective chemical solubility. The full-shift total particulate Mn time-weighted average (TWA) breathing zone concentrations ranged from 0.013–29 for soluble Mn in a mild ammonium acetate solution; from 0.26–250 for Mn0,2+in acetic acid; from non-detectable (ND) – 350 for Mn3+,4+ in hydroxylamine-hydrochloride; and from ND – 39 micrograms per cubic meter (μg/m3) for insoluble Mn fractions in hydrochloric and nitric acid. The summation of all Mn fractions in total particulate TWA ranged from 0.52–470 μg/m3. The range of respirable particulate Mn TWA concentrations were from 0.20–28 for soluble Mn; from 1.4–270 for Mn0,2+; from 0.49–150 for Mn3+,4+; from ND – 100 for insoluble Mn; and from 2.0–490 μg/m3 for Mn (sum of fractions). For all jobs combined, total particulate TWA GM concentrations of the Mn(sum) were 99 (GSD = 3.35) and 8.7 (GSD = 3.54) μg/m3 for workers inside and outside of confined spaces; respirable Mn also showed much higher levels for welders within confined spaces. Regardless of particle size and confined space work status, Mn0,2+fraction was the most abundant followed by Mn3+,4+ fraction, typically >50% and ∼30–40% of Mn(sum), respectively. Eighteen welders’ exposures exceeded the ACGIH Threshold Limit Values for total Mn (100 μg/m3) and 25 exceeded the recently adopted respirable Mn TLV (20 μg/m3). This study shows that a welding fume exposure control and management program is warranted, especially for welding jobs in confined spaces.

Keywords

construction, manganese fractionation, petroleum refineries, shielded metal arc welding (SMAW), stick welding, welding

Articoli correlati che potrebbero interessarti

Welding fume exposure and chronic obstructive pulmonary disease in welders

Journal of Occupational and Environmetal Medicine. Vol. 65, Iss. 1, January 2015

Risk of ischemic heart disease following occupational exposure to welding fumes: a systematic review with meta-analysis

Vol. 88, Iss. 3, April 2015

Exposure to respirable dust and manganese and prevalence of airways symptoms, among Swedish mild steel welders in the manufacturing industry

Vol. 87, Iss. 6, August 2014